Telephone:08 9414 7666

Choosing the Right Temperature Sensor

Choosing the Right Temperature Sensor

With many different types of temperature sensors on the market, choosing the right sensor to best fit your requirements can be a daunting task. Below is a run down of the different types of temperature sensor technologies and the associated advantages and disadvantages… to help make the decision easier!

Thermocouples

Thermocouples are used to measure temperature over ranges. They are inexpensive and rugged, but generally not as accurate as RTDs and thermistors.

Basically, thermocouples function as two strips of wire of dissimilar metals that are joined at one end, with voltage measured at the other end. Changes in temperature at the juncture induce a change in electromotive force at the other end – so as the temperature goes up, this output of emf of the thermocouple rises… though not necessarily linearly.

Thermocouples

Resistance Temperature Detectors (RTD’s)

RTD’s are stable temperature sensors with a fairly wide range, but are more expensive and less rugged than thermocouples. RTD’s rely on a current source of electricity to make measurements, which makes them potentially subject to inaccuracies from self-heating.

RTD’s work by taking advantage of the fact that electrical resistance of a given material changes as its temperature changes… therefore RTD’s rely on resistance change in a metal, as the resistance will rise more or less linearly with temperature.

RTD’s traditionally use either a length of conductor (platinum, nickel iron or copper), wound around an insulator, though modern styles often use a thin film of conductor deposit on a ceramic substrate… and measure temperatures from -196° to 482° C (-320° to 900° F).

RTDs

Thermistors

Thermistors are typically more accurate than both thermocouples and RTD’s, however they have a much more limited temperature range due to their marked non-linearity.

A thermistor capitalizes on the fact that electrical resistance of a material changes as its temperature changes. Thermistors work by relying on the resistance change in a ceramic semiconductor, with the resistance dropping non-linearly as the temperature rises.

Thermistors tend to have a large signal output, and their small size permits fast response to temperature change, making them a low cost solution to temperature measurement generally between -45° to 260° C (-50° to 500° F).

Thermistors

 

 

 

 

 

 

 

 

 

 

 

 

IC Sensors

IC or ‘integrated circuit’ Sensors are the latest style of temperature sensor on the market. IC sensors are extremely linear, and can be designed to produce either voltage or current output.

Though IC Sensors have a limited temperature range – generally between -45° to 150° C (-50° to 300° F) – they are a very effective way to produce an analog voltage proportional to temperature.

IC Sensors

 

 

 

 

 

 

 

 

 

 

 

For more information or advice on temperature sensors, don’t hesitate to contact the precision instrument experts at DG Instruments today.

If this information helped you make a decision on the temperature sensor that best suits your application, check out our range of Temperature Sensors HERE.

 

 

 

Browse Products
by Brand
  • United Electric Controls United Electric Controls
  • Red Lion Controls Red Lion Controls
  • Dwyer Instruments Dwyer Instruments
  • Burkert Burkert
  • Tecsis Tecsis
  • Novatech Australia Novatech Australia
  • Tecfluid Tecfluid
  • Meister Meister
  • Finetek Finetek
  • MacNaught MacNaught
Browse Products By
Category
Our Contact
Details

Unit 1, 79 Cutler Road
Jandakot
WA 6164

Phone: +61 8 9414 7666, Fax: +61 8 9414 7677